If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+9y=35
We move all terms to the left:
2y^2+9y-(35)=0
a = 2; b = 9; c = -35;
Δ = b2-4ac
Δ = 92-4·2·(-35)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-19}{2*2}=\frac{-28}{4} =-7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+19}{2*2}=\frac{10}{4} =2+1/2 $
| -3(-6x-3)=-9 | | 16-2n=9n+1 | | -1.3n+4.6=-2.94 | | B+1-3b=-4+6b+7b | | 4(-3x+9)=84 | | 7x-26+5x-27=10-23 | | 6/9=40/x | | 7=c-10 | | 1/x=4/15 | | 5(6x-7)=205 | | 31/4=x/3 | | V+48=7v | | 4n^2-24n-160=0 | | 1/3(n+15)=2 | | 15e+(-6e+5)-22-(-e+3)=(7e+23)-e+(3-2e) | | X-0.179x=126 | | X-0.053x=126 | | X-0.53x=126 | | 200+10^(x+3)=1600 | | X+0.53x=126 | | 5(3/7x=300) | | 4(7x+4)=15 | | (5-3c)-(4c+6)=(8c+11)(3c-6) | | 8x+22=2x+42 | | 7/8t-9=t/8+6 | | 21=1/2h(7) | | c2=3c+14 | | -|2+x|=-9 | | 9+2x+7x=108 | | (1/x)-(1/x-2)=2/63 | | 41=2x+6x+9 | | 5×-4x=-6x+3 |